38 research outputs found

    Dimensional reduction of the ABJM model

    Get PDF
    We dimensionally reduce the ABJM model, obtaining a two-dimensional theory that can be thought of as a 'master action'. This encodes information about both T- and S-duality, i.e. describes fundamental (F1) and D-strings (D1) in 9 and 10 dimensions. The Higgsed theory at large VEV and large k yields D1-brane actions in 9d and 10d, depending on which auxiliary fields are integrated out. For N=1 there is a map to a Green-Schwarz string wrapping a nontrivial circle in C^4/Z_k.Comment: 23 pages, Latex; v2: added some clarifying comments on the action of T-duality in Section 2.1.

    Bifundamental Fuzzy 2-Sphere and Fuzzy Killing Spinors

    Get PDF
    We review our construction of a bifundamental version of the fuzzy 2-sphere and its relation to fuzzy Killing spinors, first obtained in the context of the ABJM membrane model. This is shown to be completely equivalent to the usual (adjoint) fuzzy sphere. We discuss the mathematical details of the bifundamental fuzzy sphere and its field theory expansion in a model-independent way. We also examine how this new formulation affects the twisting of the fields, when comparing the field theory on the fuzzy sphere background with the compactification of the 'deconstructed' (higher dimensional) field theory.Comment: Invited contribution to special issue of SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) "Noncommutative Spaces and Fields

    Multiple Membranes in M-theory

    Get PDF
    We review developments in the theory of multiple, parallel membranes in M-theory. After discussing the inherent difficulties pertaining to a maximally supersymmetric lagrangian formulation with the appropriate field content and symmetries, we discuss how introducing the concept of 3-algebras allows for such a description. Different choices of 3-algebras lead to distinct classes of 2+1 dimensional theories with varying degrees of supersymmetry. We then describe how these are equivalent to a type of conventional superconformal Chern-Simons gauge theories at level k, coupled to bifundamental matter. Analysing the physical properties of these theories leads to the identification of a certain subclass of models with configurations of M2-branes in Z_k orbifolds of M-theory. In addition these models give rise to a whole new sector of the gauge/gravity duality in the form of an AdS_4/CFT_3 correspondence. We also discuss mass deformations, higher derivative corrections as well as the possibility of extracting information about M5-brane physics.Comment: 180 pages, 3 figures, Latex; v2: various typos corrected, clarifications, references and acknowledgements added, title modified, submitted to Physics Report

    D2 to D2

    Get PDF
    Starting from maximally supersymmetric (2+1)d Yang-Mills theory and using a duality transformation due to de Wit, Nicolai and Samtleben, we obtain the ghost-free Lorentzian 3-algebra theory that has recently been proposed to describe M2-branes. Our derivation does not invoke any properties of 3-algebras. Being derivable from SYM, the final theory is manifestly equivalent to it on-shell and should not be thought of as the IR limit that describes M2-branes, though it does have enhanced R-symmetry as well as superconformal symmetry off-shell.Comment: 1+11 pages, Latex; v2: section 3 revised and references adde

    6D (2,0) Bootstrap with soft-Actor-Critic

    Full text link
    We study numerically the 6D (2,0) superconformal bootstrap using the soft-Actor-Critic (SAC) algorithm as a stochastic optimizer. We focus on the four-point functions of scalar superconformal primaries in the energy-momentum multiplet. Starting from the supergravity limit, we perform searches for adiabatically varied central charges and derive two curves for a collection of 80 CFT data (70 of these data correspond to unprotected long multiplets and 10 to protected short multiplets). We conjecture that the two curves capture the A- and D-series (2,0) theories. Our results are competitive when compared to the existing bounds coming from standard numerical bootstrap methods, and data obtained using the OPE inversion formula. With this paper we are also releasing our Python implementation of the SAC algorithm, BootSTOP. The paper discusses the main functionality features of this package.Comment: 30 pages, 10 figures; v2: references adde

    Relating U(N)xU(N) to SU(N)xSU(N) Chern-Simons Membrane theories

    Get PDF
    By integrating out the U(1)_B gauge field, we show that the U(n)xU(n) ABJM theory at level k is equivalent to a Z_k identification of the (SU(n)xSU(n))/Z_n Chern-Simons theory, but only when n and k are coprime. As a consequence, the k=1 ABJM model for two M2-branes in R^8 can be identified with the N=8 (SU(2)xSU(2))/Z_2 theory. We also conjecture that the U(2)xU(2) ABJM model at k=2 is equivalent to the N=8 SU(2)xSU(2)-theory.Comment: 16 pages, Latex; v2: references added; v3: Clarifications adde

    M2 to D2

    Get PDF
    We examine the recently proposed "3-algebra" field theory for multiple M2-branes and show that when a scalar field valued in the 3-algebra develops a vacuum expectation value, the resulting Higgs mechanism has the novel effect of promoting topological (Chern-Simons) to dynamical (Yang-Mills) gauge fields. This leads to a precise derivation of the maximally supersymmetric Yang-Mills theory on multiple D2-branes and thereby provides a relationship between 3-algebras and Yang-Mills theories. We discuss the physical interpretation of this result

    M2-branes on M-folds

    Get PDF
    We argue that the moduli space for the Bagger-Lambert A_4 theory at level k is (R^8 \times R^8)/D_{2k}, where D_{2k} is the dihedral group of order 4k. We conjecture that the theory describes two M2-branes on a Z_{2k} ``M-fold'', in which a geometrical action of Z_{2k} is combined with an action on the branes. For k=1, this arises as the strong coupling limit of two D2-branes on an O2^- orientifold, whose worldvolume theory is the maximally supersymmetric SO(4) gauge theory. Finally, in an appropriate large-k limit we show that one recovers compactified M-theory and the M2-branes reduce to D2-branes.Comment: 16 pages, LaTeX, v2: typos corrected, included appendices on Chern-Simons level quantization and monopole charge quantizatio
    corecore